national accelerator laboratory TM-567 0428.000 Short Sample Test Data III M. E. Price, R. Yamada, R. Pighetti, and R. Barger March 24, 1975 Recent wires which have been short sampled include Fermilab -11 cables, single strands of MCA wire Billet #239 and cabled wires made from these strands, a 36 strand square MCA cable, a French cable, a Brookhaven braid, a Furukawa solid, and solders. A few comments about the following tables. J_c is current density in superconductor only. $I_{\hbox{\it eff}}$ is current density in rectangular envelope including copper, superconductor, solder and any air pockets. #### I. Equipment Change There have been no procedural changes in recent short sample tests, but major equipment changes have been made. A Transrex 500-5 power supply, which give 5000 amp at maximum, is now used to supply current to the samples instead of using two H.P. 6463's in parallel. An automatic Helium level control was installed as well as additional temperature sensors, another liquid level probe, and a field detector. We are also now hooked into the Helium recovery system when it works. ### II. Fermilab 11 Strand Wire Five samples of Fermilab 11 were tested. These are cables made of IGC 25 mil strands, and made into cables at the University of Wisconsin. Their results are shown in Table I. The samples are one without solder, two soldered ones, one keystoned, and a broken one. The first sample had no solder, only 11 wires loosely twisted together. This sample showed lower quench currents than others as expected but same $J_{\rm C}$ at $10^{-12}\Omega{\rm cm}$ and less current shaving than the others. Two soldered samples were tested – one bifiliar wound and the other hairpin and the results were practically identical. A sample was keystoned, then tested, and gave the same results. This wire shows an improvement over the Supercon 11 strand, but it is somewhat worse than MCA 11 strand. See Table I and Figure 1. The final sample had a broken strand, but there was about two inches overlap. The quench current was lowered by only 3~4%. ## III. Series of MCA Single Strands We tested two series of single strand MCA samples. All the wires in a given series had the same treatment until the final drawing, but the heat treatments of the two series were different. The first consisted of #8 - #12, were .037", .030", .025", .020", and .015" in diameter and had the long heat treatment during drawing process at .114". The second consisted of #13 - #16, were .030", .025", .020", and .015" in diameter, and had the long heat treatment at .078". A plot of cross section vs current at 50 KG and at $5 \times 10^{-13} \Omega \text{cm}$ gives a straight line for each series. I_{eff} is also indicated on the plot. The number with parenthesis is I_{eff} if each wire were enclosed in a square area and without is I_{eff} for the strand as is. The resistance of copper was about $1.8 \sim 1.9 \times 10^{-6} \Omega \text{cm}$. It looks like good wire. See Table II and Figures 2 and 3. IV. MCA 7 Strand and 11 Strand Wires Six 75 x 150 samples, made from previous MCA .037" strands were tested. They were an unsoldered, a soldered, two turkesheaded and two keystoned ones. The results are summarized in Table III and in Figure 4. The final keystoned form carried the same current as 7 times one strand. However, turksheaded samples before keystoning carried from 400 to 600 amps more. This change in critical current values may be due to cold working of turksheading and keystoning, or they may have come from different ends of a spool. A keystoned sample was tested, resoldered, then tested again with no change in the critical current. A turksheaded sample had all measurements repeated and all results were the same. The 11 strand 50 x 150 wire, made from 25 mil diameter strands, was tested using an unsoldered and a soldered sample. The results are shown in Table IV. The soldered one carries 60 amps more than 11 x current in a single strand. The unsoldered one carries 10% more. They may have come from different ends of a spool. We have not tested a keystoned sample yet. The design current at 50 KG for the seven strand wire is 3500 amps while the keystoned samples tested had only 3270 amps. The 11 strand sample with a current of 2390 amps at 50 KG is about 60 amps over specification. Although the seven strand sample, after keystoning at Fermilab, does not meet design, both MCA cables are probably the best wires tested so far. #### V. Other Wires The results of miscellaneous cables are listed in Table V. The square MCA cable (HI conductor) is 91 mils x 91 mils, has 36 strands with superconductor and a center strand which is all copper, and has Cu:S.C. ratio of 1.8:1. $I_{\rm eff}$ at 50 KG at $10^{-12}\Omega{\rm cm}$ is 50 kA/cm². This MCA square cable seems good and might be worth looking into. The French wire was received without any information at all. Six strands containing superconductor were twisted around a center all copper strand. Six of these small cables were twisted together and shaped into a rectangle to form the final cable. No solder was used. Microscopic examination revealed 37,620 superconductor filament each approximately ll μ diameter. Therefore J_{c} is only an estimate. If the diameter is 10μ or 12μ J_{c} would change by 15%. Although the sample has a high critical current, 4440 amps of 50 KG, the cross section is large and J_{c} and I_{eff} do not compare with other samples tested. The result of the short sample test on the Furukawa solid wire Type D is a low critical current. This wire has 33,000 7.3µ filaments and CuNi shieths. The cross sectional area of superconductor in the Furukawa is within 2% that of MCA 7 strand cable. However, the critical current, J_C and I_{eff} are all about half that of MCA 7 strand cable. The amount of current sharing is much greater than for MCA and Fermilab cables. The final wire we have tested recently is a sample of Brookhaven braid, approximate dimensions of .8" x .030". We were told there were 186 strands each with 361 filaments 12μ in diameter. Microscopic examination revealed the filament diameter to be $\sim 7\mu$. This corresponded with calculations based on Cu:S.C. ratio of 1.25:1. Therefore J_c was calculated based on a filament diameter of 7.1 μ . The critical current for the Brookhaven braid is higher than that of the MCA cables, but J_c is only 3/4 as much and due to braid structure I_{eff} is 1/2. ## VI. Superconductivity of Solders In addition to testing the wires, we have run resistance measurements and short sample tests on Koester 50/50 and 60/40 solders to estimate their effect on the resistance measurement of superconducting wire. For both types of solder the resistance goes to zero at approximately 6.5°K. The resistance curves are shown in Figure 6. The resistivity at different temperatures are shown below. | | Room Temp
(300°K) | 12°K | 7.5°K | 6.5°K P ₃₀ | 0 ^{/P} 1 | |--------------|-----------------------|----------------------|----------------------|-----------------------|-------------------| | 50/50 Solder | 14.1x10 6 | 2.6x10 ⁻⁷ | 2.3×10^{-7} | 2.9×10^{-8} | 54 | | 60/40 Solder | 14.2×10 ⁻⁶ | 5.3x10 ⁻⁷ | 4.9×10^{-7} | 4.8x10 ⁻⁷ | 27 | The resistivity of 60/40 solder at 12°K is about 14 times that of copper with resistivity ratio $P_{300}/P_{12}^{=50}$. If we assume there is 20% 60/40 solder in the cross section of wire, it will affect the resistivity ratio of copper by 4%. The short sample test data is shown in Figure 5. At zero current 50/50 solder becomes superconducting below 0.6kG, while 60/40 solder below 0.5 kG. At zero field 50/50 solder has a current density of $10kA/cm^2$, while 60/40 has $9 kA/cm^2$. The resistivities of these solders are respectively about 2 and $4 \times 10^{-7} \Omega cm$ above transition field. These resistivities were measured by short sample test method, increasing magnetic field beyond the transition field. | | | 40KG | 50KG | 60KG | Resistivity
at
Quench | J _C
(KH/cm ⁷) | I
eff
(KH/cm²) | |---|--|------------------------------|------------------------------|-------------------------------------|-----------------------------|---|------------------------| | Unsoldered
(bifiliar)
Jan 21 | Quench
2 x 10 ⁻¹²
10 ⁻¹²
5 x 10 ⁻¹³ | | 2030
-
2020
1920 | 1650
-
1630
1550 | 1.3x10 ⁻¹² | 192
-
191
181 | 42
-
41
39 | | Soldered
(bifiliar)
Jan 21 | Quench $_{12} \times _{10}^{10^{-12}} \times _{13}^{10^{-13}}$ | | 2110
2040
1970
1830 | 1700
1650
1620
1540 | 5 x 10 ⁻¹² | 199
192
186
173 | 43
42
40
37 | | Soldered
(hairpin)
Jan 22 | Quench $\frac{2 \times 10^{-12}}{10^{-12}}$ $\frac{10^{-12}}{5 \times 10^{-13}}$ | | 2120
2050
1930
1830 | 1710
1700
<u>1630</u>
1550 | 5 x 10 ⁻¹² | 200
193
<u>181</u>
173 | 43
42
39.5
37 | | Soldered
(hairpin
broken strand)
Feb 7 | Quench 2×10^{-12} $\frac{10^{-12}}{5 \times 10^{-13}}$ | 2540
2510
2320
2040 | 2060
2040
1840
1610 | 1680
1650
<u>1530</u>
1370 | 3 x 10 ⁻¹² | 194
192
<u>174</u>
152 | 42
42
37.6
33 | | Keystoned
(hairpin)
Feb 5 | Quench 2×10^{-12} $\frac{10^{-12}}{5 \times 10^{-13}}$ | 2630
2620
2560
2410 | 2150
2130
2000
1850 | 1740
1720
1630
1490 | 3×10^{-12} | 203
201
189
174 | 44
44
41
38 | | ll x IGC
Value for
Single Strand | Quench | | 2180 | 1740 | 3 x 10 ⁻¹¹ | 206 | 45 | TABLE I Fermilab 11 Strand Wire (made from IGC strands) at 50 KG | | | | • | | | | | | | 46 50 110 | | | |----------------|----|---------|------------------|--|------------|------------|------------|------------|----------------------------|----------------------------|---|--------------------| | Billet #2 | 39 | dia.(") | P ₃₀₀ | | 30 | 40 | 50 | 60 | J _C
(KA/cm²) | Ieff
(KA/cm²)
Strand | Ieff
(KA/cm ⁷)
Square | | | #8 | , | .037 | 71 | Quench 5 x 10 - 1 3 | 728 | 581 | 472
462 | 381 | 191
187 | 68
67 | 53
53 | | | #9 | | .030 | 71 | Quench 5 x 10 13 | 475
463 | 379
374 | 310
303 | 252
246 | 190
186 | 68
66 | 53
52 | | | #10 | | .025 | | Quench
5.x 10 ⁻¹³ | | 261
258 | 214
212 | 174
170 | 189
187 | 68
67 | 53
53 | | | #11 | | .020 | 62 | Quench
5 x 10 ⁻¹³ | 213
202 | 173
163 | 144
133 | 117
107 | 199
184 | 71
66 | 56
52 | | | #12 | | .015 | 54 | Quench
5 x 10 ⁻¹³ | 110
110 | 92
92 | 76
75 | 62
60 | 186
184 | 67
66 | 53
52 | | | | | | | , and the second se | | | | | | | | 8 | | | | | | | | | | | | | | | | #13 | | .030 | 87 | Quench
5 x 10 ⁻¹³ | 435
433 | 348
341 | 285
279 | 230
226 | 175
171 | 63
61 | 49
48 | | | #14 | | .025 | 68 | Quench
5 x 10 ⁻¹³ | 296
296 | 241
241 | 196
192 | 162
160 | 173
170 | 62
61 | 49
48 | , | | #15 | | .020 | 62 | Quench
5 x 10 ⁻¹³ | 195
191 | 160
157 | 132
127 | 108
104 | 182
175 | 65
63 | 51
49 | | | #16 | | .015 | 112(?) | Quench
5 x 10 13 | 118
103 | 97
83 | 81
67 | 67
56 | 199
165 | 71
59 | 56
46 | T1
04 | | Billet
#240 | | .037 | 73 | Quench
5 x 10 ⁻¹³ | 698 | 558 | 451 | 363 | 182 | 65 | 51 | TM-567
0428.000 | TABLE II Series _ f MCA Single Strands | | P ₃₀ 0
P ₁₀ | | 40KG | 50KG | 60KG | P at
Quench | J
(KA/cm ⁷) | ^I eff
(KA/cm²) | |---|--------------------------------------|--|------------------------------|-------------------------------------|------------------------------|-----------------------|---------------------------------|------------------------------| | Unsoldered
80 x 155
March 5 | 50 | Quench
2 x 10 ⁻¹²
10 ⁻¹²
5 x 10 ⁻¹³ | 4170
3860
3600
3370 | 3440
2910
2550
2320 | 2770
2340
2170
1920 | 10-11 | 198
168
147
134 | 43
36
32
29 | | Soldered
85 x 150
March 5 | 52 | Quench $\frac{2 \times 10^{-12}}{5 \times 10^{-13}}$ | 4080
4080
4010
3860 | 3390
3370
<u>3260</u>
3120 | 2800
2780
2720
2640 | 2×10^{-12} | 196
194
188
180 | 41
41
40
38 | | Turksheaded I
75 x 147
March 5 | 51 | Ouench $\frac{2 \times 10^{-12}}{10^{-12}}$ $\frac{5 \times 10^{-13}}{}$ | 4460
4460
4370
4290 | 3760
3760
3670
3570 | 3220
3190
3120
3020 | 2 x 10 ⁻¹² | 217
217
212
206 | 53
53
52
50 | | Turksheaded II
March ll | 48 | Quench 2×10^{-12} 10^{-13} 5×10^{-13} | 4690
4670
4580
4490 | 39 70
39 40
3860
3760 | 3390
3370
3280
3180 | 3 x 10 ⁻¹² | 229
228
223
217 | 56
55
54
53 | | Keystoned I
75 x 155
63.6 x 155
Start of keystoni
March 7 | 46
ing | Quench $\frac{2 \times 10^{-12}}{10^{-13}}$ $\frac{10^{-13}}{5 \times 10^{-13}}$ | 4050
4030
3930
3800 | 3390
3340
3260
3180 | 2790
2750
2660
2580 | 3 x 10 ⁻¹² | 196
193
188
184 | 49
48
<u>47</u>
46 | | Keystoned II
Start C-3-10
Inner | 44 | Quench 2×10^{-12} $\frac{10^{-12}}{5 \times 10^{-13}}$ | 4060
4060
4010
3860 | 3390
3370
3270
3140 | 2820
2780
2720
2640 | 2×10^{-12} | 196
194
<u>189</u>
181 | 49
49
<u>47</u>
45 | TABLE III MCA 7 (37 mil strands Billet #239) | | | | | | | | at 50 F | KG . | | |------------------------------------|------------------|--|-------|-------------|------|---------------------------------------|---------------------------------|------------------|---| | | P ₃₀₀ | | 40 KG | 50KG | 60KG | P at
Quench | J
C
(KA/cm ⁷) | Ieff
(KA/cm²) | | | | | | | | | · · · · · · · · · · · · · · · · · · · | · | | _ | | Unsoldered | 45 | Quench_ | 3460 | 2960 | 2540 | | 237 | 61 | | | March 7 | | 2×10^{-12} | 3370 | 2830 | 2420 | 4×10^{-12} | 227 | 59 | | | 50 x 149 _ | | .1 U | 3260 | 2670 | 2340 | | 215
199 | <u>56</u>
52 | | | $4.806 \times 10^{-2} \text{cm}^2$ | | 5 x 10 ⁻¹³ | 3060 | 2480 | 2240 | | 199 | 52 | | | Soldered | 46 | Quench | 2920 | 2450 | 2050 | - 1.0 | 197 | 52 | | | March 12 | | $\frac{1}{2}$ \times $\frac{1}{2}$ $\frac{1}{2}$ | | 2450 | 2050 | 2×10^{-12} | 197 | 52 | | | 49 x 148 | | Τυ | 2910 | <u>2390</u> | 1990 | | 192
184 | <u>51</u>
49 | | | $4.679 \times 10^{-2} \text{cm}^2$ | | $\frac{5 \times 10^{-13}}{5 \times 10^{-13}}$ | 2850 | 2290 | 1900 | | 184 | 49 | | TABLE IV MCA 11 (25 mil strands) | | P300
P10 | | 40 KG | 50 KG | 60KG | Resistivity
at Quench | J _C
(KA/cm ²) | Ieff
(KA/cm ⁷) | |---|-------------|---|------------------------------|------------------------------|------------------------------|--------------------------|---|-------------------------------| | French L
Feb 5
.107 x .188 | 185 | Quench_2 x 10 12 10 12 | | 5210
4540
4440 | 4 35 0
36 80
35 70 | 4 x 10 ⁻¹¹ | 146
127
124 | 40
35
<u>34</u> | | Brookhaven
Feb 6
.031 x .790 | 19 | Quench
2 x 10 ⁻¹²
10 ⁻¹²
5 x 10 ⁻¹³ | 5020
-
4720 | 4160
3950
3730
3420 | 3270
3070
2920
2670 | 10-11 | 155
147
139
128 | 25
25
24
22 | | MCA HI
(Sq.Cable)
Feb 7
.091 x .091 | 71 | Quench 2×10^{-12} $\frac{10^{-12}}{5 \times 10^{-13}}$ | 3530
3530
3200
2820 | 3010
2990
2630
2340 | 2520
2510
2220
2000 | 2 x 10 ⁻¹² | 205
203
179
159 | 57
56
50
44 | | Furukawa
Solid, Type D
March 6
.074 x .147 | 52 | Quench 2 x 10 - 12 10 - 12 | 2380
1930
1830 | 1990
1660
1610 | 1670
1350
1300 | 5 x 10 ⁻¹¹ | 116
97
<u>94</u> | 30
25
24 | TABLE V MISCELLANEOUS WIRES | | | | | | | | | | | | | - | 12 - | • | | | | | | | | | \mathbf{T} | M - : | 567 | | | |------|-------|------------|------------|-----------------|----------|------|-----------|-------------|---------------------------------------|------|---------------------------------------|----------------|------|----------|------------|---|----------------|------------|----------|---------|--|----------|--------------|----------|---------------|----------|---------------------------------------| | 1:: | | [::: | T:::: | :::: | 1:::: | :;:: | :::: | :::; | j;;;;; | :::: | | | :::: | :::: | | :::: | | : : : : | :::: | :.:: | 1:::: | | | 28. | | | | | ::: | | | 1:::: | : : : | | :::: | | | | | | | | | | | | | 1111 | 1 : : : | | | | | | | | | | ::: | | | | | | ::::: | :::: | | | | | | ; ; ; ; | 1 2 2 | | :::: | | | :::: | 1 | | | :::: | | | | | | 1:-:: | | 1:::: | : : : : : : : : : : : : : : : : : : : | | | | - | | 1 | | | :::: | | | | | | | | | | | 1.71 | 1111 | | 11 | :::: | :::::: | | | | | | 7 | | ~ ~ | ע פ | - j- | | | | | 1 | | | 7 | | | | | | | | | 1:::: | 11111 | | | <u> </u> | | | | | | 5
(4 | | ļ., | A | 1 | | | | | :::: | | | | | | 2 53.1 | | ::::: | 1:::: | 1:::: | ::::::: | | | <u> </u> | : | | | L | n. | 2 | OI IV | الحرا | ==== | | | | | | | | | | | - : : : : : : : : : : : : : : : : : : : | | -:-: | | | 1: | | | | | | | | -111 | ::::: | PA | mp | 5 / | | | | | EL EL | | ::::: | F | | | | | | | | 1 | × | | | =: | | | | | | | | | | | | | | 1::::: | | | | | | | L | | | | | 3 | | | | | | | | | | | 12727 | | | | | | ::::: | | | | | | | | | | | | 7 | \angle | | | | | | 1 | | | | | | | | | == | === | = | -=== | | | | | - | | | | 1 | | | | | | | | i : | | | | | | | | | 222 | :::::: | | | - | | | | | | == | | | 1 | = | X | | | | | | | === | | | 4 | | | | | Æ | | | | | | | | | = | | | <u> </u> | \- <u></u> | <u> </u> | _ < | | | | \mathbb{M} | | - / | 4 | | | | | | | 21 | 00 | <u></u> | | | | | | | | === | | , , | | ==> | <u> </u> | | | | | M | | | | | | | | | | | | | | | | - | === | | | | - | 1 | = | | 7. | | | === | la | rei | 2=1 | 2 | 1 | | - Z | = | | | = | <u> </u> | <u> </u> | L | === | | | | | = | | | | | | | | | | | | | | | | | 7 | <u></u> | = | 7. | <u> </u> | | | | | | - | | | | | | | | | | | E== | | | | | | | | | 77 | \equiv | | 1 | | | | <u> </u> | | == | | | | | | | | | | | | | | | | | | | = | | 1 | -> | | † | 1== | | | | === | | | | | | === | | | | | | | | | | | | | | \ <u>\</u> | = | 1 | | | - | | | | | | | | | 1=== | | | | | | | | | | | | | | | , , | ζ= | 7 | 11/1 | 7 | - | 1 | | | | | | | | <u>-</u> - | | | | | | | | | | | | | | 1. | | _ | | | £ | | = | | | | | | | 21 | 000 | 5 | | | | | | | | | | | | | | | <u> </u> | | =_` | à. | | | | 7 | | | | | 1.0 | | | | | | | | | | | | | | | | | | | ~ | | <u> </u> | 12 | | | | | | | - | | | | | | • | ļ | | | | | | | | | | | | <u> </u> | 4 | VZ | 1 | =1 | | | | | | | | | | | | | | | | <u> </u> | | | | · · · · · · · · · · · · · · · · · · · | | | | | | - | | | | | | | | | \equiv | | 2 | | | | | | | | | | | | | | | | | | E | e k | 5 | | | | | | | 1 | \rightarrow | == | | | <u> </u> | | | | | | | | | | | | | ‡== | == | 三 | | | | | | == | | | | | | | | | | | | | = | | | | | | | | प्रय | e n | <u>-/</u> | 7 | | | | | | | | | | | | - | 1:-:: | | | | | | ļ <u>.</u> | | | | | = |) | 10 | 12 | 12 | cm | 7 | | | | | | | | | = | | | | 1: | 4 | | | ļ | 1 | · | · | | L | 1 | 1 | | | 1 | | | F=== | Ţ | == | | | | | | 1=== | 1== | 1: | 1 | <u> </u> | | | | | 10 | 00 | == | | | | 4 | 5-× | +11 | -73 | 5 | Les | 7 | | 1 | | | | | | | | | 4 ' ' | 1. | | | | | 10 | 00 | | | | | 1 | 5 × | 10 | -/:
2-/ | 3 | 2 | | | | | | | | | | | 1= | | | | | | | 10 | 00 | | | | | 3 | <i>5</i> × 2 → | 10 | -/:
>-/ | 7
Ст
3—л | 2 4 | 7 | | | | | F | | | | | | | | | | | | 10 | 00 | | | | <i>-1</i> | 3
37 | 5 ×
2 > | 10 | -/:
>-/ | 3 , | 2 4 | -7 | | | | | F | 19 | | | | | | | | | | | 10 | 00 | | | | <i>J</i> |)
 | 5 ×
2 > | 10 | -/:
>-/
 | 3 | 2 - | | | | | | F | | | | | | | | | | | | 10 | 00 | | | | | 3
 | 5 × | 10 | / ·
/
 | | 2-6 | | | | | | F | 1 | | | | | | | | | | | 10 | 00 | | | | | 3
 | <i>5</i> × 2 → | 10 | / · · · · · · · · · · · · · · · · · · | 3 | | | | | | | F | 19 | | | | | | | | | | | 10 | 00 | | | | | 9
-7
 | <i>5 × 2 × 1 1 1 1 1 1 1 1 1 1</i> | 10 | / · · · · · · · · · · · · · · · · · · | | | | | | | | F | 7 | | | | | | | | | | | 10 | 00 | | | | | 9
-7
 | 2 -> | 10 | | | | | | | | | F | 7 | | | | | | | | | | | 10 | 00 | | | | | 9
 | 2 > | 10 | ; = /;
; = / | | | | | | | | F | 7 | | | | | | | | | | | 10 | 00 | | | | | 2 | 10 | 00 | | | | | | | | | | | | | | | 0 | | | | 70 | | | 6 | 7 | | | | | 10 | 00 | | | | | | | | | | | | | | | 0 | | | | 1 | | | β. | 2 | | | | | 10 | 00 | | | | | | | | | | | | 29 | ne | | о
(Ки | | | | 1 | | | β | 2 | | | | | 10 | 00 | | | | | | | | | | | | 0.9 | nee | | o
(K | | | | 70 | | | 6. | 2 | | | | | | | | | | | | | | | _ | 14- | | | | | | | | | | _T | | | | | |-------------|---|----------|-----------|----------|-----------|--------------|--|-----|---------------|-------------|---|----------|----------|---------|----------|-------|-----|------------------|---------------------------------------|--------------|---------------|--|--------------|------------------|-------------|--|---------------| | | THE | :::: | | | :::: | . : : : | | | | : :::: | :::: | 1:::: | :::: | | | | | | | | | 1111 | 04 | 28. | 00 | 0 | | | | | | | | | | | | | | | | | 1 1 1 | | | | | | | | | - | | 1 | | | | | 1:::: | | | | | | | | | | | | | | 11 | | | | | | | ;:::: | | | | | ::: | | | | | | | | | | | | M | 7 | 1 | Λ: | : : : : | : :::: | :::: | | | | | :::: | 1 | 1 | | | 1 | | | | 1:::: | | : : : : ; | | | | | | | | | . 1 | 4 | | :::: | | | 1 | | :::: | 1 7 7 7 | 1:::: | 1:::: | :::: | | <u> </u> | | | | 1::::: | :::: | : : : : | | | | | | ! :::: | 7 | <u> </u> | 11.7 | 1 | | 1 | 49- 5 | | | | | | 1 | | | | 1 | | | | er | e_ | 11 | | | | | 51 | n | 91 | <u>e </u> | 5 T | ra | 17_1 | УI | # | U | | | | | | 1 | 1 2 2 2 2 | 1 | | | | | Se | | _ / | 0 | | | 1:25 | | ļ: <u></u> | | | -111 | === | | | | | | | | | | | 1:::: | | | 1::: | | <u>- 11</u> | 700 | EF1 | 1 2 | F | | ļ | | | 1 | 1 == == | 1.1 11 | 1::.: | | | | | | | 1::: | ::::: | | ==: | 1 | 1:11 | | | | | | Ar | : קר | s J :: | | | ţ | 1 | | | ::::: | ,0 | 25 | - 1/ | | | | | | | | | 1 | | 2 1.1 1. | | 1:.:: | ļ::; | | | | | | | | | | | -==== | - | 127 | | | ~ = | | | | | | | | | === | | i : : . | 1:::: | 1::: | | | - | | | | | <u> </u> | | | | - | € 5 | | 7, 1 | 27 | 5 | | | | | | | | | - | | ļ | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | 1 2 2 | 1 | | | | | | | | | - | | | | | | | | | | | | | | | | | - | | | 1:::: | 1 : : : | | | | | | | | <u> </u> | l ==== | 115 | ed | S | or | -11 | 5 / | ra. | nd | M | 6 | } -== | | | ==== | === | | | <u> </u> | | 1 | | === | | | | | | | | | = | <u> </u> | | | | | | | ==1 | | | | === | == | === | | | | | | | | 30 | 0 | <u> </u> | | <u> </u> | | | | - | | | | | <u> </u> | === | | | | | | 1 | | | | 1 | | | === | 1 | | | | | 1 | | | | EEE | + | | | | | | | | <u> </u> | = | | 1== | 1 | | | | 1 | | ;:: | | | | | | 1== | | | | | 1== | | | | | | | | | | | === | | | 1:-::: | 1 | 1 | | | <u> </u> | LΞ | | | | | <u> </u> | === | == | | | == | | | === | | == | | | | | - | - | | * | 1: | 1== | | | $\pm \overline{-}$ | | | | | 1== | - | | | | <u> </u> | 1== | | | | | | | - | 1== | | 1== | | | | 1-2 | | | = | | | | ļ | | | | | = | === | | = | | | | | | <u> </u> | - | = | == | 1=== | = | | | | | | | | | | | | 1= | == | == | | | 1 | E | | | | | | Ż | | | | | 1 | | - | <u> </u> | | | | <u> </u> | | | | | } | E | | | | == | | | | | | = 4 | 注文 | | === | | | 1 | === | | T | 1= | | == | 1 | | | 1== | | !== | 兰 | | == | 1=== | | == | | | | | | = | | Ę | L | - | <u> </u> | | | 1= | Ξ. | | | | | | | | <u> </u> | <u> </u> | | | == | | <u> </u> | | | === | | | | 11 | 12 | Ţ | 1== | Ī | == | | 1 | 1 | | | 1 | | | | | 1 | === | | | ! | == | = | - | | | | | | | 1 | | == | | 1== | | | + | | | 1== | | | | | != | | | | | 1== | 1=== | | == | | | | | | | 12 | Ţ | - | === | 1 | == | += | | | +== | | | | | | | | | 1== | 1== | F | === | | === | | | | - | | Ξ, | | #== | 1== | | ļ=== | - | | | = | 21 | 20 | | | <u> </u> | <u> </u> | | 1 | | | == | <u> </u> | | ! | | | | | | <u> </u> | K., | \equiv | - | | E | ţ | | | === | 120 | | | _ | <u> </u> | | == | = | | <u> </u> | | | | == | | == | | | = | | 1=3 | 17/2 | 巨 | | 1== | 1= | | = | == | | - | | | 1 | <u> </u> | | <u> </u> | | | | | | | | | | | | - | | 7.5.7 | 1-7- | | 1 | | | | <u> </u> | | | == | | | | | == | ļ | | | <u> </u> | , | | | | | | | | 1 | | | | | ļ | | | | | | | :
!=== | | | | | | | | 70 | | | | | | - | - | | 1== | | | | 1 | | | | - | | | = | <u> </u> | <u> </u> | 辷 | == | ΙΞ, | 4== | 5-y | 10 | -7: | 57 | - | | | | | = | | | 1= | | UT. | A | 1= | | | == | | | 1== | | = | - | | | | | 1 | - | | | | | | | | | | | | - | 1 | | | | 1== | 1 | | = | | | | | | IJ | $2 \times$ | 10 | / | 12 | - | _ | | | | <u> </u> | - | - | | | | 1 | | | === | 丰 | === | 1== | | | 1= | | | 1 | i | 1 | | | <u></u> | | | | | <u> </u> | == | <u> </u> | 1== | <u> </u> | | | 1 | 1 := | | | == | | | | | 2 | | | | 4 | U | 1 | 12 | | | | | | 4 | | | 1== | 1 | | | 1 | | | === | | | ļ., | ļ | <u> </u> | ş | 1 | ļ | ·-· | 7 | . : | | <u> </u> | | | | | | | 1 | | | | | | · i · · · · · | | | | $\pm =$ | | | | | | = | | | | | | = | | 5.75 | <u> </u> | | | | | | | | | | | | | | <u> </u> | | 1= | | | | 4 | 1 | 4 | 10 | | | | | | | | | | | | | | | | | | | ? | | | | | | | | | | 10 | 0 | | | | | | | | | | | | | | | 7 | | | 3 | | | | | | | | | | 10 | 0 | | | | | | | | | | | | | | | 7 | · · · · · · · · · · · · · · · · · · · | | 3 | | | | | | | | | | 10 | 0 | | | | | | | | | | | | | | | 7 | | | 3 | | | | | | | | | | 10 | 0 | | | | | | | | | | | | | | | 7 | , , | | 3 | | | | | | | | | | 10 | 0 | | | | | | | | | | | | | | | | 7, 6 | | 3 | | | | | | | | | | 10 | 0 | | | | | | | | | | | | | | | | ,, , | | 3 | | | | | | | | | | 10 | 0 | | | | | | | | | | | | | | | | | 7 | | | | | | | | | | | 10 | 0 | | | 1 | | | | | | | | | | · | | | | | | | | | | | | | | | 10 | 0 | | | | | | | | | | | 1== | | | | | | | | | | | | | | | | | 10 | 0 | | | 1 | | | | | | | | | | | | | | | 3 | | | | | | | | | | 10 | 0 | | | 1 | | | | | | | | | | | | | | | 3 | | | | | | | | | | 10 | 0 | | | 1 | | | | | | | | | | | | | | | 3 | | | | | 50 | | | | | 10 | 0 | | | 1 | | | i i | | | | | | | | | | | | 3 | | | | | 50 | | | | | 10 | 0 | | | 1 | | | | 0 | e/. | | 3 | | | | | | | | 3 | | | | | 50 | | | | | 10 | 0 | | | 1 | | | i i | | e / . | | 3
gf | | | | | | | | 3 | | | | | 50 | | | | | 10 | 0 | | | 1 | | | i i | P = 1 | e / . | | 3
of | | | | | | | | 3 | | | | | 50 | | | | | 10 | 0 | | | 1 | | | i i | P = 1 | e / . | | 3 | | | | | | | | 3 | | | | | 50 | | | | | 10 | 0 | | | 1 | | | i i | OFI | e// | | 3 | | Ya | ? n | | | | | 3 | | | | | 50 | | | | | | 0 | | | 1 | | | i i | P = 1 | e// | | 3 | | Ya | ? n | | | | | 3 | 10 | | | | 50 | | | | | | 0 | | | 1 | | | i i | 0 | e/, | 4 | 3 | | Ya | ? n | | | | 3) | 5 | 10 | | | | 50 | |